SECOND SEMESTER [BCA] MAY-JUNE 2017

Pap	er Code: BCA-102	Subject: Mathematics-II		
Tim	e: 3 Hours	Maximum Marks: 75		
Not	te: Attempt any five questions incl Select one question	luding Q.no.1 which is compulsory. n from each Unit.		
Q1	domain and range of the relation	itive divisors of the positive integer n. by Hasse Diagram. (2)		
	 (d) Let f, g, be functions from N to such that f(n) = n + 1, g(n) = 2 (e) Define Tautology and contradict 	o N (set of natural numbers) for $N \in N$ 2n. Find $f \circ g$ and $g \circ f$. (3)		
	(g) Choose any two statements p a for p ∧ q, and p ∨ q.(h) Consider the graph G (V, E) wh	and q as you like. Draw the truth table (2) ere v consists of Four vertices A, B, C, $e_1 = \{A, B\}, e_2 = \{B, C\}, e_3 = \{C, D\}, e_4 = \{A, B\}, e_5 = \{B, C\}, e_6 = \{C, D\}, e_6 = \{C, D\},$		
	$\{A,C\}$ and $e_5 = \{B,D\}$, rediagrammatically. Determine the	present this undirected graph		
	(j) If $n(A) = 40, n(B) = 30, n(A \cap B)$			
	Unit	:-I		
Q2	(a) Let $A = \{1, 2, 5, 6\}$, $B = \{2, 5, 7\}$, $C = \{2, 5,$	$\{B \times C\}$. (6) set of all positive integers and		
Q3	equivalence relation. (b) For the sets A, B, C prove the fo	in a set A. Then prove that R^{-1} is also (6) llowing results. C), (ii) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.(6.5)		
	Unit	-II		
Q4	(a) In a lattice (L, \leq) , prove that (i) $a \land (b \lor c) \ge (a \land b) \lor (a \land c)$. (b) Define Bounded lattice and prove	(ii) $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$. (6) we that every lattice L is bounded. (6.5)		
Q5	elements of (D_{30}, I) .	so find the complement (if exists) of all (6.5) be equipped with relation x divides y. (6) P.T.O.		

BCA-102

Unit-III

Q6 (a) Let G be an undirected graph with m vertices, say $v_1, v_2, v_3, \dots v_m$. Define the adjacent matrix A of G. Consider the undirected graph G with 5 vertices v_1, v_2, v_3, v_4, v_5 shown in the following diagram. Find the adjacent matrix of this graph. (6.5)

(b) Draw the directed graph for the following incident matrix. Also find the degree of all vertex.

	e_1	e_2	e_3	e 4	<i>e</i> ₅	<i>e</i> ₆	e 7	<i>e</i> 8	
v_1	-1	0	0	0	-1	-1	1	0	
v_2	1	1	0	0	0	0	0	1	
v_3	0	-1	-1	0	0	1	0	0	. (6)
v_4	0	0	1	1	0	0	-1	0	1 10 10 10 10 10 10 10 10 10 10 10 10 10
v_5	0	0	0	-1	1	0	0	-1_	and the standard of the standa

Q7 (a) Show that the two graphs shown in the figure are Isomorphic. (6.5)

(b) Prove that the union of two graphs G_1 and G_2 will be a graph such that.

$$V(G_1 \cup G_2) = V(G_1) \cup V(G_2) \text{ and } E(G_1 \cup G_2) = E(G_1) \cup E(G_2).$$
 (6)

Unit-IV

- Q8 (a) By means of truth tables, justify that the conditional statement "If p then q" is logically equivalent to the statement "Not p or q". (6.5)
 - (b) Define a proposition. Let p and q be propositions and p → q denote compound proposition, "if p then q". Draw the truth table for the compound proposition p→q. Let p: you try, and q: you will succeed. Justify the truth table for p →q.
 (6)
- Q9 (a) Verify De-morgan's laws for propositions. And also prove that. $P \land (q \lor r) = (p \land q) \lor (p \land r)$. (6.5) (b) Consider the following:
 - P: Today is Tuesday, Q: It is raining, R: It is cold.

Write in simple sentence the meaning of the following:

- (i) $\sim q \rightarrow (r \land q)$
- (ii) $(p \lor q) \leftrightarrow r$

BCA-102 P2/2

SECOND SEMESTER [BCA] MAY-2017

Paper Code: BCA104 Subject: Principles of Management
Time: 3 Hours Maximum Marks: 75

Note: Attempt all questions as directed. Internal choice is indicated.

Q1 Answer the following questions:-

(5x5=25)

- (a) Taylorism and Theory X are consistent with each other. Comment.
- (b) Real life decision making process is "satisfying" rather than "economizing". Analyze the statement.
- (c) Management is about doing things right and leadership is about doing right things. Elucidate.
- (d) Discuss A-B-C Model of Behaviour modification with examples.
- (e) Briefly analyze Elton Mayo's contribution to management theory.

UNIT-I

Q2 Explain Systems Theory of Management and discuss the context under which it emerged. (12.5)

OR

State Mintzberg's Classification of managerial roles and mention atleast one activity/task performed by a typical manager that corresponds with each role. (12.5)

UNIT-II

Q3 Define Organization Structure and briefly discuss the features of bureaucratic and matrix type organization structures. (12.5)

OR

What do you understand by Staffing function? Discuss its significance for success of organizations. (12.5)

UNIT-III

- Q4 (a) Explain the process of motivation.
 - (b) According to Herzberg, Hygiene factors are extrinsic where as motivators are intrinsic. What does it imply for motivation of employees? (12.5)

OR

Briefly discuss Situational leadership model and its limitations. (12.5)

UNIT-IV

Q5 Referring to Holland's Six types of personality and congruent work environments suggest atleast two suitable occupations for each personality type. (12.5)

OR

How we perceive the world depends on how we define ourselves in terms of our membership in various social groups. Analyze the statement in the context of the concepts of social identity and stereotyping referring to our personal experiences. (12.5)

P

Subject: Digital Electronics

(Batch 2011 onwards)

Maximum Marks: 75

Paper Code: BCA-106

Time: 3 Hours

END TERM EXAMINATION

SECOND SEMESTER [BCA] MAY JUNE 2017

Note: Attempt any five questions including Q.no. 1 which is compulsory.

Select one question from each unit.

ts. voltage
(3) (6.5) (3)
d whose (6.5)
(6.5) (6)
olain its (6.5) (6)
op that (7) (5.5)
(7.5)
(7.5) (5)
(7.5)
(5)

SECOND SEMESTER [BCA] MAY-JUNE 2017

Paper Code: BCA-108

Subject: Data Structure using C

Time: 3 Hours

Maximum Marks: 75

Note: Attempt any five questions including Q no.1 which is compulsory. Select one question from each unit.

Q1 (a) Add and subtract the following two sparse matrices. (5)

- (b) Perform insertion sort on the following values. (5) 6, 55, 11, 10, 18
- (c) Convert the following infix expression into postfix expression. (5) (A+B-C*D)/H
- (d) Write the preorder traversal of the following tree. (5)

(e) Write a Recursive function to count number of nodes in Tree. (5)

UNIT-I

- Q2 (a) Classify primitive and non-primitive data structures. Discuss the operations performed on data structures. (6)
 - (b) Evaluate the following postfix expression using stacks 320, 10, *, 10, 60, 100, *, /
- Q3 (a) Explain why circular queue is better than linear queue? (6)
 - (b) Discuss D-queues and priority queues. What are the applications of stacks and queues? (6.5)

UNIT-II

- Q4 (a) Write a function to insert a node at the end of single linked list. (6)
 - (b) Write a function to delete a node from beginning of double linked list.

 (6.5)
- Q5 (a) A binary tree T has 09 nodes. The inorder and preorder traversals of T yield the following sequences of nodes. (6)

Inorder: D G B A H E I C F Preorder: A B D G C E H I F

Draw the tree T

P.T.O.

(b) Consider the following binary tree T with N=10 nodes. What is the inorder traversal of the tree? (6.5)

UNIT-III

- Q6 (a) Construct B-tree of order 3 by inserting the following keys in the order shown. (6.5)

 18 19, 6, 10, 40
 - (b) Construct Binary Search Tree of the following keys in the order shown (6)

1, 2, 3, 15, 8, 25, 7, 9, 10, 13

- Q7 (a) Construct an AVL search tree of the following values 11, 20, 23, 5, 3
 - (b) Insert the following values in the order of their occurrence 30, 31 in the given B tree of order 5. (6.5)

UNIT-IV

- Q8 (a) Define hashing. Why do we use hashing? Discuss any two hashing methods with example. (6.5)
 - (b) Which searching technique is best and under what conditions?

 Justify your answer with the help of an example. (6)
- Q9 (a) Compare Selection sort and Merge sort. (6)
 (b) Which sorting technique is better and why? Explain with an example. (6.5)

BCA-108 P2/2

	SECOND SEMESTER [BCA] MAY 2017
Pape	er Code: BCA-110 Subject: Database Management Systems
	e: 3 Hours Maximum Marks: 75
Not	e: Attempt any five questions including Q no.1 which is compulsory. Select one question from each unit.
Q1	Answer the following:- (a) What do you mean by functional dependency? Discuss with suitable example.
	(b) What is lock? What are the various types of locks used for concurrency control?(c) Describe any four main functions of a database administrator.(d) Define the following terms giving examples for each of them: Entity,
	attribute, role and relationship between the entities. (e) Differentiate between database management system and file system.
	UNIT-I
Q2	 (a) Write a short note on three scheme architecture. (b) Explain different types of Data Independence. (c) Write a short note on the following:- (i) Primary Kky (ii) Candidate key (iii) Super key (iv) Derived attribute (v) Multivalued attribute
Q3	(a) Explain the term Generalization and Specialization with suitable example. (4) Suppose you have a table for a dance studio. The attributes are dancer's identification number, dancer's name, dancer's address, dancer's telephone number, class identification number, day that the class meets, time that the class meets, instructor name, and instructor identification number. Assume that each dancer takes one class, each meets only once a week and has one instructor and each instructor can teach more than one class. Dancer (Dancer_ID, Dancer_Name, Dancer_Address, Dancer_Phone, Class_ID, Class_Day, Class_Time, Instructor_Name, Instructor_ID) Draw an entity-relationship diagram (ERD) for this database. (8.5)
Q4	 (a) Explain the SQL operators BETWEEN, AND, IN, LIKE and IS_NULL by taking suitable examples. (b) Discus various data types available in SQL. (c) SQL allows attributes to have a special value NULL, which is called the null value. What are three common interpretations that can be put on null values? (3)
Q5	 (a) What is a weak entity set? What are two principles sources of weak entity sets? Give examples to explain. (b) What do you understand by referential integrity constraint and attribute-based check constraint? (6.5)

P.T.O.

BCA-110 P1/2

UNIT-III

Q6	(a) Given the following relations: Vehicle (reg-no, make, colour) Person (eno, name, address) Owner (eno, reg-no)	(6)
	Write expressions in relational algebra to answer the for queries:	llowing
	(i) List the names of persons who do not own any car.(ii) List the names of persons who own only Maruti Cars.(b) Differentiate between Data Definition Language (DDL) and	Data
	Manipulation Language (DML). (c) Write a short note on 3NF.	(3) (3.5)
Q7	(a) List the difference between Equijoin and Natural join. Give exame each join operation.(b) What are the problems caused by data redundancies? Carredundancies be completely eliminated when a database approused? Explain this with the help of an example.	(6) n data
	UNIT-IV	
Q8	(a) Describe Two Phase Locking protocol with suitable example.(b) Describe Deadlock with suitable example and also explain recovery from the deadlock.	(6) about (6.5)
Q9	Write short notes on the following:- (a) Time Stamp Based Concurrency Control. (b) Backup and Recovery Techniques (c) Serializable and Non Serializable Transactions	(4) (4) (4.5)

BCA-110 P2/2